Pages

Sunday, March 10, 2013

WiFi is GENOTOXIC according to Switzerland's IT Giant Swisscom



Swisscom, Switzerland's leading telecom and IT company,  explained the toxicity of WiFi radiation in the following document:

"The influence of electrosmog on the human body is a known problem. The health risk from mobile radio transmitters, handys and DECT telephones has been an explosive subject among the general public at least since the enormous breakthrough in mobile radio technology in the 1990s. To meet the concerns of science from the legislative side, the permissible limit values have thus been lowered several times, and technology has been increasingly focused on this problem. The risk of damage to health through electrosmog has also become better understood as a result of more recent and improved studies. When, for example, human blood cells are irradiated with electromagnetic fields, clear damage to hereditary material has been demonstrated and there have been indications of an increased cancer risk (Mashevich M., Folkman D., Kesar A., Barbul A., Korenstein R., Jerby E., Avivi L., Department of Human Genetics and Molecular Medicine, Tel-Aviv
University, Tel-Aviv, Israel, "Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability," Bioelectromagnetics, 2003 Feb., 24(2): 82-90). In this study, for example, human peripheral lymphocytes were exposed to continuous electromagnetic fields of 830 MHz in order to examine whether this leads to losses or gains in chromosomes (aneuploidy). Bigger changes lead to instability of the genome (= the totality of all genes of a germinal cell) and thereby to cancer. 
 
The human peripheral blood lymphocytes (PBL) were irradiated at different average specific absorption rates (SAR) of 1.6 to 8.8 W/kg over a time period of 72 hours in an exposure system based on a parallel plate resonator in a temperature range of 34.5 to 37.5 °C. The average absorption rate (SAR) and its distribution in the exposed tissue culture flask were determined by combining the measurement results with a numerical analysis based on a finite element simulation code. A linear increase in the chromosome No. 17 -- an aneuploidy (=numerical chromosome aberration) - was observed as a function of the SAR, demonstrating that this radiation has a genotoxic effect. The SAR-dependent aneuploidy was accompanied by an abnormal mode of replication of the chromosome 17 region engaged in segregation (repetitive DNA arrays associated with the centromere), suggesting that epigenetic alterations are involved in the SAR dependent genetic toxicity. Control experiments (i.e. without any radio frequency radiation) carried out in the temperature range of 34.5 to 38.5 °C showed that elevated temperature is not associated with either the genetic or epigenetic alterations observed following RF radiation, these alterations being the increased levels of aneuploidy and the modification in replication of the centromeric DNA arrays. These findings indicate that the genotoxic effect of electromagnetic radiation is elicited via a non-thermal pathway. Moreover aneuploidy is to be considered as a known phenomenon in the increase of cancer risk.

Thus it has been possible to show that mobile radio radiation can cause damage to genetic material, in particular in human white blood cells, whereby both the DNA itself is damaged and the number of chromosomes changed. This mutation can consequently lead to increased cancer risk. In particular, it could also be shown that this destruction is not dependent upon temperature increases, i.e. is non-thermal...
Despite increasingly strict national guidelines with respect to legally specified limits, the impact of electrosmog in WLANs on the human body can be considerable. Moreover it is to be expected that this impact will continue to increase in the future for many people. Two factors in particular are playing a role in this: First, more and more applications require additional, usually higher-energy frequency bands in order to be able to meet the growing need with respect to transmission rate. Second, the need for WLAN expansion in the private sphere as well as in the public sphere, e.g. in airports, railway stations, trains, restaurants, exhibition halls, etc., has by far not yet reached its peak. With the state of the art as a basis, there has been a lot of effort put into providing evidence for the detrimental effects of electrosmog and setting corresponding limits. Limits and guidelines alone will not suffice, however, to further contain the electrosmog in WLANs since the development in WLANs runs in exactly the opposite direction, as mentioned above. WLANs even represent zones in which people usually spend longer periods of time (place of work, Internet, network games, etc.) and are therefore to be considered as particularly problematic with respect to radiation impact.

WLANs in the state of the art moreover send base stations, such as access points, so-called beacon signals periodically so that mobile units can recognize the network and authenticate themselves with an access point. These beacon signals comprise recognition signals, such as e.g. SSIDs and/or other radio frequency signals with control parameters. Even if no mobile units are located in the WLAN, the beacon signals continue to be transmitted periodically to the APs. This means that even when the WLAN is not being used at all, an underlying stress from electromagnetic radiation remains for persons in the Basic Service Area of an access point of the WLAN. For example, in the case of WLANs at places of employment, such as offices, etc., there exists therefore permanent stress from electrosmog from the WLAN on the employees of the company or organization. In the state of the art there exists only the possibility of further reducing the limits for electromagnetic radiation..."